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Abstract

Reconciling food, fiber and energy production with biodiversity conservation is among

the greatest challenges of the century, especially in the face of climate change. Model-

based scenarios linking climate, land use and biodiversity can be exceptionally useful

tools for decision support in that perspective. Here we present a modeling framework that

links climate projections, private land use decisions including farming, forest and urban

uses and the abundances of common birds as an indicator of biodiversity. One of the major

originalities is to integrate the effect of climate change on the economic drivers of land

use using fine-scale data from France. Different economic and conservation scenarios,

coupled with a regionalized projection of climate change (IPCC SRES A1B) are compared

in terms of impacts on land use and biodiversity over the next four decades. Our analysis

indicates that the effect of climate dominates the effects of land use and conservation

policy on bird abundances at the national scale. Moreover, global environmental changes

turn out to be globally detrimental for biodiversity. Only a moderate number of bird

species and locations appear to profit from habitat-based conservation.
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1 Introduction1

Climate and Land Use Changes (LUC) are considered to be two of the main drivers of past2

and future changes in terrestrial biodiversity (MA 2005, Pereira et al. 2010; Willis and3

MacDonald 2011). For medium-term prospective analyses (ca. 50 yrs) these two drivers4

can be treated very differently in terms of scenarios and possibilities for intervention for5

biological conservation policy. At this temporal horizon, global warming can reasonably be6

considered as exogenous since climate projections foresee that most of the climate change over7

this period is already committed (i.e., are relatively independent of greenhouse gas emissions8

scenarios, IPCC 2007; Rogelj et al. 2012). By contrast, LUC are potentially under much9

greater control of national and local decision makers and therefore seen as more controllable10

drivers for conservation policies. However, some of these present and future LUC are likely11

to be influenced by climate change. It is clear that local opportunities and constraints appear12

when climate changes and that humans adapt their use of land resources. For example,13

there are already signs of negative impacts of recent climate warming on corn and wheat14

yields, and models foresee that future climate change will result in projected northward15

shifts of maize area in the United States, or rice area in China (Brisson et al., 2010; Lobell16

et al., 2011; Tubiello et al., 2002; Xiong et al., 2009). Consequently, an efficient conservation17

policy has to be based both on the direct climate effect on species communities and the18

indirect effects induced by human adaptations, strategies and public policies (Hannah et al.,19

2002; Berrang-Ford et al., 2011). It requires the integration of ecological, environmental and20

anthropogenic dimensions accounting in particular for economic mechanisms. This paper21

presents an integrated bio-economic model as a way of exploring these interactions. We use a22

fine-scale analysis of continental France as a case study to demonstrate the insights that can23

be provided by this type of model.24

We use the abundance of common bird species as our biodiversity metric, since birds25

are often regarded as good general indicators of the state of wildlife and of the countryside,26
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for both scientific and practical reasons (Furness and Greenwood, 1993; Gregory et al.,27

2005). For our analysis, bird abundance data were extracted from a standardized, volunteer-28

based monitoring program with a random initial selection of sites that results in habitat-29

representative sampling efforts. Compared with threat status, population trends are updated30

more frequently and thus have a higher temporal resolution. Habitat representativity is31

crucial because it provides coherence with the land use mapping of all cover types in the32

econometric model about LUC (agricultural areas, semi-natural areas but also urban areas.)33

A high temporal resolution is necessary for both model calibration and extrapolation to the34

future. In our analysis, the dynamics of bird species populations are related to climate and35

habitat changes, based on the principals of Species Distribution Models (SDM). However, we36

have modeled species population size rather than the probability of presence that is typically37

predicted by SDM (Araújo et al., 2005; Guisan and Thuiller, 2005; Brotons et al., 2012;38

Renwick et al., 2012). These models are based on ecological niche theory (Hutchinson, 1978),39

and assume that habitat and climate requirements can be deduced from current distributions40

and then distributions and population size can be extrapolated using projections of future41

climate and habitat changes (Peterson et al., 2011).42

To simulate future land use dynamics, an econometric model is used to estimate spatially43

explicit LUC based on the assumption that land use decisions are functions of economic44

returns as assessed by private decision makers (Stavins and Jaffe, 1990; Plantinga, 1996;45

Nelson et al., 2008; Radeloff et al., 2012). Such models have been shown to be consistent46

with classical economic theory and observations (Lubowski et al., 2008; Lewis et al., 2011).47

Nevertheless, such models are very demanding in terms of data because knowledge of48

potential economic return is required for each sampled land plot and each possible land use.49

We circumvent this constraint by combining aggregated but exhaustive data about land prices50

and precise data at each sampled land plot about biophysical attributes including topography,51

land quality and climate. The econometric model is estimated on observed LUC (France,52

1993–2003) in order to simulate spatially explicit LUC for different economic scenarios (for a53
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similar exercise in the U.S. but with different data choices, see Radeloff et al. 2012).54

The third component of our bio-economic model takes into account the effect of climate55

change on the economic returns of land within a Ricardian analysis. Based on the seminal56

work of Mendelsohn et al. (1994) and extended for different regions of the world (see Mendel-57

sohn and Dinar, 2009 for a review), this consists in evaluating the consequences of climate58

change on land profitability on the basis of the correlations between current land prices and59

climate variables. Because land price is considered as the net present value of an infinite60

flow of economic returns, the effect of projected climate on land prices is a proxy for its net61

effect on the economic returns of land. With this structure in three modelling blocks (SDM,62

LUC and Ricardian analysis), this integrated bio-economic model is used to simulate future63

land uses and birds’ distributions from the present to 2053 in 10 years time slices.64

2 Material and methods65

2.1 Data66

2.1.1 Bird abundances67

We used bird data from the French Breeding Bird Survey (FBBS), a standardized monitoring68

scheme in which skilled volunteer ornithologists identify breeding birds by song or visual69

contact in spring (Jiguet et al., 2012). In FBBS, each observer provides the name of her70

municipality, and a 2 × 2 km square to be prospected is randomly selected within a 10 km71

radius from the gravity center of this municipality. In each square, the observer monitors72

10 point counts separated by at least 300 m twice per spring (4 to 6 weeks between the73

sessions, 5 minutes each). Counts were repeated yearly by the same observer at the same74

points, on about the same date (with a maximum difference of 7 days within April to mid75

June) and at the same time of day (with a maximum difference of 15 minutes). FBBS data76
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contribute to European official index of biodiversity and have been extensively used to study77

the effects of climate and LUC on bird populations (Barbet-Massin et al., 2011; Barnagaud78

et al., 2012), as well as the effects of farmers’ preferences (Mouysset et al., in press) and the79

effects of agro-environmental policies (Mouysset et al., 2011, 2012). To simultaneously smooth80

annual noise and model the observed dynamics, FBBS data are used at two points of time,81

2003 and 2009. For each species and each FBBS square, bird abundances are respectively82

defined as the maximum number of counts 2002–2004 (n = 1,031) and 2008–2010 (n = 1,380).83

FBBS provides also a description of the habitats of the surveyed squares. Even if this84

information cannot be used to describe the national dynamics of LUC, they appear to be85

better predictors of the bird population than the aggregation of more exhaustive data at the86

scale of FBBS squares. So the SDM are estimated with FBBS habitats description and each87

FBBS observation is weighted in the regressions according to its significance in terms of local88

land use.89

2.1.2 Land Use Changes90

Data about LUC are extracted from the TERUTI survey which was carried out every year91

1992–2003 by the statistical services of the French Ministry of Agriculture. The TERUTI92

survey counts about 550,000 points for which we know the location in terms of French93

municipalities: the finest administrative delineation (n ≈ 36 500, median area: 10.73 km2).94

The TERUTI survey uses a systematic area frame sampling with a two-stage sampling95

design. In the first stage, the total national area is divided into a 12 × 12 km grid. For each96

of these 4,700 regular meshes there are 4 aerial photographs which cover 3.5 km2 each. In97

the second stage, on each photograph, a 6-by-6 grid determines the 36 points to be surveyed98

in June by an agent on the ground. Each point corresponds to a homogeneous unit in terms99

of land use and statistically represents about 100 hectares (ha) at the département scale100

(n = 95, median area: 5,880 km2). On the basis of the detailed classification of land uses (81101

items) we attribute to each plot a use among 5 more aggregate items: annual crop, pasture,102
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perennial crop, forest or urban. These data have already be used to estimate econometric103

LUC models by Chakir and Parent (2009) and Chakir and Le Gallo (2012) but not for the104

whole of France and at a such disaggregate level. They have been similarly merged with a105

subset of the avian data that are used here, at the national scale (Devictor et al., 2007, 2008),106

but not in relation with the economic incentives of landowners’ choices.107

2.1.3 Economic returns108

For the estimation of the econometric model of LUC, the price of land is used to compute the109

expected net returns from different agricultural land uses. Defining land price as the net110

present value of expected future rents is standard in the economic theory (Ricardo, 1817;111

Goodwin et al., 2003). This approach, detailed in subsubsection 2.2.3, uses data about land112

prices that also come from the statistical services of the French Ministry of Agriculture. Yearly113

prices 1990–2005 are available for three land uses (annual crops, pastures and perennial114

crops) and for the 713 Small Agricultural Regions (SAR) of France. SAR size ranges from115

11 to 4,413 km2 with an homogeneity in terms of both agro-ecological and economic levels,116

reducing intra-SAR heterogeneity (Mouysset et al., 2012). For the two others considered land117

uses – forest and urban – the approximations of economic returns are computed differently118

and at different geographic scales. For the expected net returns from forest, we use data119

about wood raw production (in m3), total forest area (in ha) and wood prices (in current euro120

per ha), all available annually at the scale of the French départements. We compute the121

expected returns from forest by multiplying the aggregate production by its unitary price122

and dividing the result by the total forest area of each département. Because this calculation123

provides the net returns per total forested area, it implicitly takes into account that only a124

part of the forest area is harvested each year (with a harvested share closely related to the125

length of rotations). It is nevertheless based on the assumption of a myopic agent who makes126

decisions based on the hypothesis that future returns will be the same as today and neglect127

production costs. The urban returns are approximated by the population densities at the fine128
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scale of the municipalities on the basis of the national census of French population (source:129

http://www.insee.fr/en/bases-de-donnees/default.asp?page=recensements.htm, last accessed:130

February 18, 2013).131

2.1.4 Biophysical attributes132

Biophysical attributes of sampled TERUTI plots include both topographic and climate133

variables. Topography of each plot was generated by coupling a Digital Elevation Model134

of France (resolution of 250 meters, see http://professionnels.ign.fr/rgealti, last accessed:135

February 18, 2013) with the spatial geo-referencement of plots. Within a Geographical136

Information System (GIS), we calculated the elevation, the slope, the roughness and the137

exposition of each TERUTI sampled plot. Soil quality variables were extracted from the138

French soil database developed by the National Institute for Agricultural Research and139

matched by GIS. The initial data are available at the 1:1,000,000-scale (Jamagne et al. 1995,140

http://www.gissol.fr/programme/bdgsf/bdgsf.php, last accessed: February 18, 2013) and they141

were downscaled to a 1-km grid with pedotransfert rules (Cheaib et al., 2012). They provide142

measures of the agricultural fertility of plots: plant available water capacity and soil depth.143

We use historical (1990–2010) and projected (2010–2053) climate data, both available144

at the same spatial resolution (8 × 8 km rasters) with a smooth transition between his-145

torical and future climate. Climate data include 13 variables about temperatures (annual146

means, maximum and minimum, bird breeding period means April–August and seasonality147

approximated by standard deviation), precipitations (annual means, maximum and min-148

imum, breeding period means and seasonality), solar radiation (breeding period means),149

relative humidity (breeding period means) and wind (breeding period means). Regionalized150

climate scenarios are based on the Intergovernmental Panel of Climate Change’s SRES A1B151

greenhouse gas emissions scenario A1B coupled with the Météo-France Arpège climate model152

(Déqué, 2007). Regionalized climate projections were produced with a multivariate statistical153

downscaling methodology, which is able to generate local time series of temperature and154
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precipitation, and other climatic variables at different sites (Boé et al., 2009). The model is155

based on large-scale circulation predictors, here the mean sea-level pressure field, as well as156

the 2-meter temperature averaged over France. It starts from regional climate properties to157

establish discriminating weather types for the chosen local variable. Intra-type variations158

of the relevant forcing parameters are then taken into account by multivariate regression159

using the distances of a given day to the different weather types as predictors. The final step160

consists of conditional re-sampling (for further details in climate downscaling see Boé et al.,161

2009 and Cheaib et al., 2012).162

2.2 Models163

2.2.1 Species Distribution Models164

Bird populations are modeled with Species Distribution Models (SDM) that are viewed as165

providing a first approximation of the potential impact of climate and habitat changes on166

biodiversity (Pearson and Dawson, 2003). For a general description of the method, we note167

µtqs the abundance of species s in the FBBS square q at the time t and we assume the168

following relationship between the outcome and its predictors:169

log(µqst)=λs(cqt,hqt,xq,zq)+δs · t, (1)

where the λs(·) are spline-based smoothing functions with an endogenous structure as170

it is common for Generalized Additive Models (Hastie and Tibshirani, 1990). They have to171

be estimated, as the scalars δs that capture the linear growth 2003–2009 for each species172

s, all other things equal. cqt stands for the values at location q and time t of the two first173

axes of a principal component analysis on the matrix of climatic variables. The Figure SM1174

of Supplementary Material (SM) shows the locations of the initial variables in terms of175

their principal axes that account for 87% of variance. hqt is the vector of habitat variables176
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including a fragmentation index, xq represents a vector of topographic variables while zq177

is the spatial coordinates of the gravity center of each FBBS square. Including the spatial178

coordinates inside the smoothed function allows us to separate the unobserved contextual179

effects (i.e., inter-species competition, spillovers from anthropogenic perturbations) from the180

direct topographic, climatic and habitat effects. Because birds’ abundances are over-dispersed181

positive integers, they are modeled as a distribution from the negative binomial family. The182

function gam() from the R package mgcv 1.7 was used to estimate such models (Wood, 2006).183

2.2.2 Econometric model of Land Use Changes184

We have reduced land use types to five (L = 5) exhaustive and mutually exclusive categories.185

In our case study, land uses refer to annual crop, perennial crop, pasture, forest and urban.186

Landowners are assumed to choose LUC in order to maximize their utility and these choices187

are assumed to be independent for each parcel. With this latter assumption, we can associate188

each plot of land with a distinct decision maker. In particular, a stylized landowner i chooses189

the use `∗it on a plot if this provides the highest utility from all uses that are possible. The190

following formula:191

`∗it = argmax
`

{ui`t} (2)

is connected to the behavioral assumption of rationality. But rationality is not a necessary192

condition, as Train (2009) explains: “The models can also be seen as simply describing the193

relation of explanatory variables to the outcome of a choice, without reference to exactly how194

the choice is made.” Utility ui`t is net of conversion costs from the previous land use (in195

period t−1), we comment this point later. This formulation for utility is forward-looking and196

allows the possibility of multi-year LUC as perennial crop, forest or urban. In the literature197

(Plantinga, 1996; Lubowski et al., 2008), utility is assumed to be the expected one-period198

net returns that come from a dynamic optimization problem. We exploit this result here199
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by assuming a parametric but nevertheless flexible structure between the expected returns200

and utility. At t, for each land use (∀`= 1, . . . ,L) and for each sampled plot (∀i = 1, . . . , I), we201

assume:202

ui`t =α`+ r̂itβ1`+citβ2`+xiβ3`+ r̂it(cit +xi)β4`+hit−1η`+εi`t. (3)

Where r̂it is the computed vector of net returns in t for each possible land uses on plot203

i. Because these variables are only available at the scale of the SAR, they are crossed with204

climate cit and biophysical variables xi to allow plot-level deviations from the aggregate205

returns. These two latter vectors come from a dimension reduction of initial variables by206

principal component analysis (see Figure SM1 of SM). Conversion costs between uses are207

taken into account (and proved to be strong determinants) by including L−1 dummy variables208

representing the previous land use of plot i: hit−1. So, the vector η` provides estimates of209

the costs to change to land use `. Each vector of coefficients to estimate [α`;β·`;η`] is proper210

to a land use category `. This means that expected economic returns, climate, biophysical211

variables and conversion costs could have heterogeneous effects on the utility, depending on212

the considered land use.213

Because all the sources of landowner’s utility cannot be observed, an error term εi`t214

is included in eq.(3). The stochasticity of the model is only related to these unobserved215

components of utilities and their associated densities. McFadden (1974) identifies three216

standard hypothesis about errors that allow to obtain a multinomial logit model: indepen-217

dence, homoscedasticity and extreme value distribution (i.e., Gumbel). With these hypothesis,218

one can show that the probabilities have simple closed forms, which correspond to the logit219

transformation of the deterministic part of the utility (ūi`t ≡ ui`t −εi`t). The probability that220

the land plot i is in use ` at the period t is:221

pi`t = exp(ūi`t)∑
k exp(ūikt)

= f`(r̂it,cit,xi,hit−1). (4)
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The estimation was performed using nnet 7.3 and mlogit 0.2 on R. Another critical222

part of the model is that the unobserved factors have to be uncorrelated over alternatives223

and periods, as well as having the same variance for all alternatives and periods. These224

assumptions, used to provide a convenient form for the choice probability, are found to be not225

restrictive (homoscedasticity cannot be rejected by a score test, p-value= 0.283). Moreover,226

these hypothesis are associated with the classical restriction of Independence of Irrelevant227

Alternatives for which Hausman-McFadden specification tests are performed, with mixed228

evidence. The independence is not rejected for three uses: pasture, perennial crop and229

urban (p-values are respectively 0.001, 0.005 and 0.036) but rejected for annual crop and230

forest at 5%. This means that the 3 formers choices can be dropped from the choice set231

without modifying significantly the parameters of the model (i.e., they are robust to the IIA232

restriction) a property which is not true for the 2 latter.233

2.2.3 Models of economic returns234

As noted above, the price of land is used to compute the expected net return from land use.235

To understand this, land is considered as a classical fixed asset. This implies that its price236

v`t at time t for the use ` is equal to the net present value of all expected future rents that237

keeping it in its current use allows to earn. Assuming flat interest rates τt = τ and flat rates238

of capital gains gt = g, this reads as follows:239

v`t =
∞∑

s=1

Et(r`t+s)
Πs

j=1(1+τt+ j)
=

∞∑
s=1

Et(r`t+s)
(1+τ)s =

∞∑
s=1

Et(r`t+1)(1+ g)s

(1+τ)s = Et(r`t+1)
(τ− g)

, (5)

The expectation operator at t is noted Et, and previous equalities use the well-known240

property of the sum of infinite geometric series. Thus, knowing or making an assumption241

about the difference between the interest rate and the rate of capital gains (τ− g) is sufficient242

to compute the expected return of a land plot on the basis of its observed price: r̂`t = (τ−g)·v`t.243

This result depends strongly on well-functioning (i.e., competitive and balanced) markets244
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and so has to be considered as a theoretically-consistent first approximation.245

To model the effect of climate change on land prices v`t or, equivalently, on the expected246

net returns r̂`t of annual crop, pasture, perennial crop and forest, we use a Ricardian analysis247

(Mendelsohn et al., 1994). The Ricardian equations relate the economic returns of land to248

climate, other biophysical variables and geographical coordinates. The relation is specified249

as follows:250

log(r̂ i`t)= y`(cit,xi,zi)+γ` · t, (6)

with y`(·) is a spline-based smooth function with endogenous structure which depends251

of the considered land use. Thus, these GAM functions and the γ` are estimated on the252

cross-sectional variations between SAR and the time series 1993–2003, accounting for the253

capitalized value of climate and time in land returns. The models are estimated separately254

for annual crop, pasture, perennial crop and forest using GAM with a distribution from255

the Gaussian family with natural logarithm link (Wood, 2006). For the dynamics of the256

urban returns, we use the spatialized previsions of population growth by INSEE. Because257

demographic data are available at the département scale, they are downscaled by assuming258

that each municipality keep a constant proportion of the aggregate values.259

2.2.4 Simulation of scenarios260

Our scenarios differentiate themselves by the dynamics of the deterministic part of utilities261

of eq.(4). The estimated logit regression function f̂`(·) and the biophysical variables xi stay262

constant between scenarios. But, depending on the considered scenario, the economic returns263

r̂it and/or the climate variables cit are allowed to change. We consider 5 scenarios that are264

presented in Table 1. They vary according to three dimensions: the extrapolation of current265

trend, the inclusion of climate change and the presence of a conservation policy.266
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Table 1: The differences between scenarios in terms of factors from species distribution and
land use change models

Factors accounted for in models

Scenario Bird abundances Land Use Changes (LUC)

S0 Trend + Climate Change Constant
S1 Climate + Trend + LUC Continued trend only
S2 Climate + Trend + LUC Trend + Climate Change
S3 Climate + Trend + LUC Trend + Payments for pasture
S4 Climate + Trend + LUC Trend + Climate Change + Payments

Notes: Simulations of bird population by SDM pursue the observed 2001–2009 trends and integrate climate
change in all scenarios. In scenario S0, land use is constant. In scenario S1, the model of LUC is used to
extrapolate the temporal trends to obtain a kind of business-as-usual scenario. In scenario S2, the effects of
climate change on the returns from land and, consequently, on LUC are taken into account. Scenario S3 and S4
are respectively equivalent to S1 and S2 with a conservation policy focusing on permanent pastures. See in the
text for the details of the conservation policy.

Once the LUC econometric model is estimated, the direct predictions (without changing267

exogenous variables) consist, for each plot i, in a fitted probability vector p̂it of being in268

each use at t. Because the model is estimated on LUC 1993–2003, we consider 1993 as269

the period t = 0 and 2003 as the period t = 1: our model is recursive with decennial steps.270

Remembering that each TERUTI observation counts for 100 ha, the predicted probabilities271

can be easily converted into predicted LUC. As an example, consider a plot i which counts272

for 100 ha of annual crop in period 0 and has a predicted probability vector for period 1 of273

p̂i1 = (0.8,0.15,0.03,0.01,0.01). This means that 80 ha are predicted to not change their use,274

15 ha to be converted to pasture, 3 ha to perennial crop, 1 ha to forest and 1 ha to urban275

(probabilities p̂i1 are in the order annual crop, pasture, perennial crop, forest, urban). Land276

use at t = 1 is common to all scenarios and, for S0, it is the same at t = 2 (2013), t = 3 (2023),277

t = 4 (2033), t = 5 (2043) and t = 6 (2053).278

For the others scenarios, LUC simulation for t = 2 is performed by substituting the dy-279

namics of certain exogenous variables in regression equations. For S1, only t is implemented280

in the Ricardian equation (6) to obtain the economic returns r̂S1
i2 that are plugged into the lo-281

gistic equations (4). For S2, climate variables cit are implemented in the Ricardian equations282
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(6) as in the logistic equations (4). For both scenarios, we predict a probability matrix of land283

use in t = 2 conditionally on previous land use: ĥi2 = p̂i2(hi1). One has nevertheless to note284

that this step in the simulation is facilitated by the knowledge of the previous use for each285

surveyed plots by the 2003 wave of the TERUTI survey: hi1. Things are different to simulate286

LUC after the period t = 2 for which we do not have a single previous use for each plot: we287

only know a vector of probabilities: ĥi2. So the next LUC, for t = 3 but equally for t = 4, t = 5288

and t = 6, are computed differently. For each potential use ` on a plot i, the simulated land289

use is:290

ĥi`t = p̂it(hit−1 = 1`) · ĥit−1, (7)

where 1k is a 1×L vector with the k-component equals to 1 and the others to zero. In291

other words, variables describing land use are still dummies to predict transition probabilities292

but they are values inside the unit interval to simulate land use. Because LUC transition293

probabilities are functions of expected returns of each land use, the inclusion of an incentive-294

based conservation policy (for S3 and S4) is straightforward. Here, to keep the paper short, we295

describe only the results to a permanent payment of 200 euros/ha for the pasture. Different296

taxes and/or subsidies on other land uses can also be implemented with our model, we let it297

for future researches. This conservation policy consists, for t > 1, in increasing the rents for298

pastures (`= 3) used to fit transition probabilities:299

r̂S3
i3t = r̂S1

i3t +200 and r̂S4
i3t = r̂S2

i3t +200. (8)

For the others uses, the respective economic returns of S3 and S4 are the same as S1 and300

S2. For all scenarios, LUC are used in the SDM of eq.(1) to predict bird abundances at the301

sames spatial and temporal scales. At this final stage, these LUC effects are coupled with302

the direct effect of climate change on bird distribution. To evaluate the effects on birds we303
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use an abundance-based index: the geometric mean of current abundances normalized by304

the abundances of the year 2003 (t =1):305

BImt =
∏
s∈S

(
µ̂ms(t)
µms(1)

)1/|S|
(9)

where m is the geographical scale at which the index is computed, principally the France306

to obtain national dynamics or the 12 × 12 km TERUTI mesh to optain maps. Applied to307

farmland specialists species, this index is the well-used European Farmland Bird Index308

but we use it equally on birds species as a whole and for different habitat specializations:309

generalist, forest and urban. Because this index aggregates potentially heterogeneous species’310

trends, we use the formula from Gregory et al. (2005) to compute the associated standard311

errors.312

3 Results313

3.1 Climate change impacts on birds without LUC (scenario S0)314

The first scenario consists in predicting the effect of climate change on bird populations,315

modifying only climate in the SDM. This means that land use is considered as constant.316

Under the IPCC SRES A1B regionalized climate projection used here (Cheaib et al., 2012),317

the annual temperature of France is projected to increase by + 2.02°C ± 0.23 s.d. up to 2053.318

The annual cumulative precipitation is projected to decrease by − 13.40 mm ± 6.3 s.d., the319

relative humidity to decrease by − 1.69 % ± 1.2 s.d. and the solar radiation to increase by +320

17.10 J ± 14.4 s.d. As displayed in the Panel B of Figure 1 from a national viewpoint, the321

effect of climate change on the aggregate bird index is first positive (+ 5% up to 2020), not322

significant for 2030–2040 and strongly negative from 2040 onward (− 10% at 2053).323

The spatial precision of the projected climate (8 × 8 km) allows us to model more precisely324
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Figure 1: The effects of climate and land use changes on the index of bird abundances for the
scenarios without conservation: S0, S1 and S2.

A. Spatial distribution of bird index 2003−2053, scenario S0
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B. National trend of bird index, scenario S0
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C. Spatial distribution of bird index 2003−2053, scenario S1
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D. National trend of bird index, scenarios S1 and S0
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E. Spatial distribution of bird index 2003−2053, scenario S2
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F. National trend of bird index, scenario S2 and S0
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than usual the geographical shifts in bird distributions. As the panel A of Figure 1 shows,325

the Mediterranean coast at the southeast and the center of the southwest are two regions326

of important decline in bird populations. Some important (even if less strong) detrimental327

effects appear as well in the northwest of France. In contrast, bird populations in the328

continental part of the country – the east and the center – have high positive growth rates329

(up to + 40%). These dynamics of bird populations are best explained by average 2003330

temperatures and average elevation (respective Pearson’s correlations of − 0.51 and + 0.42,331

both p-values < 0.001).332

In this scenario, land use is constant but plays an important role in determining bird333

population dynamics. The Figure SM2 of SM differentiates the direct effect of climate334

according to species’ preference in terms of habitats. It shows that climate change up to335

2053 is significantly detrimental for generalist species (about − 10%), forest specialists336

(about − 30%) and urban specialists (about − 2.5%). In contrast, the model predicts that the337

abundances of farmland specialists increase by about + 10% over this period, even if the338

confidence interval is larger than the others. The mechanisms driving this effect are that339

climate-induced shifts in bird species distributions are toward areas of more favorable land340

uses for farmland specialists. Pastures are generally at higher elevation than annual crops.341

The Figure SM3 provides the individual rates of variation for each bird species abundances342

2003–2053. Climate change significantly impacts the large majority of species: the variations343

of only 2 species are not significant, 21 species increase and 39 decrease.344

3.2 Climate change with extrapolated trends of LUC (scenario S1)345

This first scenario of LUC was simulated by extrapolating the 1993–2003 trends of economic346

returns (see subsubsection 2.2.4). It is coupled with the previous S0 effect of climate change347

on birds. Panel (a) of Table 2 presents the national land allocation 2003–2053 with decennial348

steps. The main insights are, as for the previous decade, the increase of annual crop, forest349

18



and urban area (respectively + 3.17%, + 9.11% and + 33.4%) and the decrease of pasture350

and perennial crop area (both of − 17.7%). In relative terms, the urbanization of land is the351

most notable trend, as in Haim et al. (2011). The dynamic of annual crops is the more subtle352

with a small loss 2003–2013, an increase 2013–2033 and a stagnation 2033–2053.353

Table 2: National acreages of land uses (in thousand hectares) and the associated growth
rates for scenarios S1, S2, S3 and S4

Extrapolating current trends of land use changes

(a) S1: Without conservation (b) S3: With conservation
YEAR PECR ANCR PAST FORE URBA PECR ANCR PAST FORE URBA
2003 141.3 1,573.5 1,529.8 1,580.4 315.7 141.3 1,573.5 1,529.8 1,580.4 315.7
2013 135.1 1,571.7 1,472.6 1,610.1 351.3 130.3 1,397.2 1,718.2 1,561.3 333.8
2023 128.2 1,606.6 1,390.0 1,643.9 371.9 119.9 1,334.1 1,789.1 1,555.3 342.4
2033 123.2 1,621.5 1,332.4 1,673.6 389.9 112.4 1,292.8 1,832.7 1,551.2 351.6
2043 119.3 1,625.4 1,290.2 1,700.1 405.6 106.8 1,265.3 1,859.5 1,548.2 361.0
2053 116.2 1,623.0 1,258.1 1,724.2 419.3 102.6 1,246.4 1,875.7 1,546.0 370.1

∆(%) − 17.7 + 3.17 − 17.7 + 9.11 + 33.4 − 27.6 − 20.79 + 22.6 − 2.15 + 17.5

Climate-induced land use changes

(c) S2: Without conservation (d) S4: With conservation
YEAR PECR ANCR PAST FORE URBA PECR ANCR PAST FORE URBA
2003 141.3 1,573.5 1,529.8 1,580.4 315.7 141.3 1,573.5 1,529.8 1,580.4 315.7
2013 185.8 1,687.0 1,327.5 1,593.6 346.9 184.1 1,611.6 1,436.0 1,573.8 325.2
2023 181.4 1,833.4 1,146.0 1,614.0 365.9 176.2 1,579.8 1,519.7 1,541.6 333.4
2033 198.5 1,935.6 973.9 1,630.8 401.8 183.2 1,635.8 1,477.2 1,514.8 339.7
2043 217.4 2,096.6 754.8 1,625.9 446.1 193.7 1,836.2 1,278.5 1,486.4 345.9
2053 306.6 2,038.6 680.8 1,607.5 507.3 259.7 1,827.1 1,233.5 1,431.3 389.1

∆(%) + 177 + 27.15 − 55.5 + 1.71 + 60.1 + 83.7 + 16.15 − 19.36 − 9.43 + 23.5

Notes: In columns: ANCR for Annual Crops, FORES for Forests, PECR for Perennial Crops, PAST for pastures
and URBA for urban. The two last rows, named ∆(%), present the growth rates 2003–2053.

The effect of LUC in the scenario S1 is globally neutral concerning the dynamics of the354

national bird index: the differences with S0 are small and not significant (see Panel D of355

Figure 1). In S1, the aggregate bird index is shaped exclusively by climate change. Spatially,356

the general structure is maintained but there is some mitigation at certain parts of the south357

of France and an amplification at the northwest (see Panel C of Figure 1). To disentangle358

the effects of S1 LUC from the climate effects, the Figures SM4 and SM5 present the net359
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effects of S1 LUC with constant climate. It appears that S1 LUC effects are much more360

smooth and homogeneous between species with the same habitat preferences (relatively to361

the effects plotted in Figure SM2). They are positive and significant for urban specialists and362

generalists, not significant for forest specialists and negative and significant for farmland363

specialists. From individual species point of view, populations grow significantly for 15364

species as a result of S1 LUC, 10 decrease significantly and 37 do not exhibit any significantly365

evolution.366

3.3 Climate change with climate-induced LUC (scenario S2)367

The endogenisation of the effects of climate on the economic returns of land by the Ricardian368

models is presented in Table 3. Up to 2053, the returns are predicted to increase for annual369

crop (md= + 116.8%), for pastures (md= + 73.81%) and perennial crop (md= + 13.35). The370

median increase of the density of population is + 28.31% but the median rate of variation371

for returns from forest is negative: − 13.18%. Climate change is also found to increase the372

heterogeneity (measured by Standard Errors) in terms of economic returns for annual crops,373

pastures and urban.374

Table 3: The Ricardian effects of climate change on the economic returns from land: amounts
in money and in variations

2003 2053 Variations 2003–2053
Land Use Mean SE Mean SE Min Q1 Q2 Q3 Max

ANCR 265.4 92.27 587.7 346.2 − 100.0 + 72.05 + 116.8 + 159.4 + 323.5
PAST 113.9 73.35 191.7 103.8 − 24.10 + 52.62 + 73.81 + 98.21 + 341.7
PECR 177.3 730.1 185.6 699.4 − 75.18 + 4.474 + 13.35 + 19.01 + 196.0
FORE 80.90 60.07 69.92 53.31 − 44.76 − 16.25 − 13.18 − 8.742 + 45.36
URBA 81.98 291.8 103.0 386.8 − 29.10 + 13.99 + 28.31 + 46.81 + 109.4

Notes: The mean values of returns are in current euros/ha for the first 4 rows and hab/km2 for the last. SE is
for Standard Errors and variations are expressed in %. In row: ANCR for Annual Crops, FORES for Forests,
PECR for Perennial Crops, PAST for Pastures and URBA for Urban.

The Panel (c) of Table 2 presents the consequences of such variations of economic returns375
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in terms of LUC. Except for perennial crops, climate-induced LUC are in the same directions376

as in the scenario S1: annual crops, forests and urban increase and pastures decrease. The377

effect of climate change on perennial crops is strong (+ 177%) and is mainly explained by378

the high growth rate at the top of the distribution of returns. As a consequence, this growth379

concerns few locations already specialized in perennial crops (southeast in particular). The380

important decrease of pastures (− 55.5%) is mainly explained by the substitution for annual381

crops and urban. The growth rate of urbanization in S2 is twice the rate of S1 even if the same382

scenario in terms of population growth is used. This can be explained by the fact that higher383

temperatures are in general associated with bigger houses and bigger gardens in France (to384

enjoy warmer temperatures), so global warming is projected to increase urbanization (Haim385

et al., 2011).386

The Panel F of Figure 1 shows that climate-induced LUC amplifies the negative effect387

of climate change on the aggregate bird index. With climate-induced LUC, the national388

bird index shows a decrease of 14% of abundances in 2053, relatively to 10% in the case of389

constant land use S0. Panel E of Figure 1 indicates a strong spatial redistribution of the loss390

in terms of abundances. An important part of the most detrimental effects of climate change391

in the southeast are mitigated by climate-induced LUC. In contrast, an amplification of the392

effect of climate change appears in the northeast. Climate change implies a northern shift of393

annual crops and an increase of urban and perennial crops in the south that explain these394

results.395

The isolated effects of S2 LUC on birds are shown in Figures SM6 and SM7, according to396

habitat preferences of bird species and for each species separately. It appears that only urban397

specialists benefit from climate-induced LUC: + 10.5%. The others present a significant398

decrease in abundance for 2053: respectively − 5%, − 7.5% and − 8.5% for generalist,399

farmland and forest specialists. The raw effects of S2 LUC are negative and significant for400

41 species and positive for only 12 species. The latters are all urban specialists except the401

Eurasian skylark (Alauda arvensis) that is a farmland specialist.402
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3.4 Climate change with conservation policy (scenarios S3 and S4)403

Coupled with S1 to produce S3, the annual payment of 200 euro/ha for pasture is sufficient404

to reverse the predicted decline of pasture in the next decades, see the Panel (b) of Table 2.405

This payment involves a net increase of + 22.6% of pastures in the period 2003–2053. In S3,406

the urbanization is still positive but moderate (+ 17.5%) relative to S1. Pastures induced by407

such a conservation strategy (new pastures but also pastures that are not converted) replace408

principally annual and perennial crops in the scenario S1. Even if the conservation scenario409

negatively affects forest acreages, the loss is small: − 2.15%. The spatial distribution of these410

conservation-induced pastures are presented in the Panel A of Figure 2. Areas of annual crop411

specialization (around Paris at the northern center) and of forest specialization (extremes412

southwest and southeast) are not heavily impacted by the conservation which are well spread413

over locations.414

Figure 2: The net effects of the conservation payments of 200 euro/ha on pastures in scenarios
S3 and S4, relative to S1 and S2 respectively

A. New pasture acreages from S3 compared to S1, in points of pc
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However, coupled with S2 to obtain S4 (i.e., taking into account climate change impacts on415

LUC), the same payments for conservation are not able to reverse the loss of pastures, see the416

Panel (d) of Table 2. Nevertheless, the predicted loss is highly mitigated relatively to S2, and417

the 2053 acreages of pasture with conservation policy (S4) are near than twice the acreages418
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without conservation (S2). The payments for pasture coexist with an increase of annual crops419

because, as we have already seen, crops returns increase both by the extrapolation of trends420

and the benefit from climate change by the Ricardian effect. Conservation payments decrease421

urbanization even though this land conversion remains high (+ 23.5%). This scenario S4422

presents the highest loss of forest acreages (− 9.4%) both because of the decrease of the423

returns of forests from climate change and the competition with pastures that come from424

conservation. In this scenario, conservation-induced pastures are clearly spatially segregated425

(see the Panel B of Figure 2). The east and the center of France concentrate the principal426

part of these pastures, leaving the northwest weakly impacted by the conservation.427

Figure 3: The effects of climate, land use changes and conservation policy on the index of
birds abundances for scenarios S3 and S4.

A. Spatial distribution of bird index 2003−2053, scenario S3
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C. Spatial distribution of bird index 2003−2053, scenario S4
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For both conservation scenarios S3 and S4, the payments for pasture allow to significantly428

increase the national bird index but not sufficiently to counteract the negative effects of429

climate change (Panels B and D of Figure 3). The national trend stays shaped by climate430

change (i.e., first a small increase then a bigger decrease) even if the differences that come431

from conservation are statistically significants. For S3, the negative effects of climate432

are delayed to 2045 instead of 2030 for S1. For S4, the conservation implies 2053 birds’433

abundances close to S0 (about − 10%), indicating that conservation allows to counteract434

globally the negative effects of climate-induced LUC. It is also interesting to show that the435

effects of the 200 euros/ha conservation on the differences between S3 and S1 and between436

S4 and S2 are relatively similar: about + 2.5 points of the national bird index.437

Figures SM8 and SM9 present the net effects of both scenarios with conservation on bird438

species individually. For S3, the effects of conservation are generally positive. They involve439

detrimental effects only for 10 species of all habitat preferences, and species with negative440

effects from S1 are not particularly targeted. The biggest improvements due to conservation441

concern farmland specialists: Whinchat (Saxicola rubetra), Hoopoe (Upupa epops), European442

Stonechat (Saxicola rubicola) and Red-backed Shrike (Lanius collurio). For S4, conservation443

negatively affects 20 species from all habitat preferences. But strong positive effects are444

found for certain species, in particular species of the bottom of the Figure SM9 that are445

declining strongly in S2. This is a kind of mitigation effect from habitat-based conservation,446

but clearly insufficient to counteract the patterns implied by climate change.447

4 Discussion448

4.1 Ecological models449

We show that the dynamics of bird populations facing climate change vary according to450

both their location within their current climatic niches and the land use corresponding to451
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their future climatic niches. Our results clearly show that the former source of variation is452

stronger than the latter. A first explanation for this result is simply that climatic variables453

have stronger effects in SDM that habitat and topographic variables. So, the climate side454

of our scenarios is the most important driver of the spatial dynamics of common birds. The455

second explanation is that LUC of our scenarios are not directly operated in relation to456

birds dynamics. LUC and conservation policy could potentially have stronger effects if they457

were deliberately shaped for bird conservation and if the climate-induced shifts in bird458

distributions were taken into account in land use decisions. But, even if conservation policy459

could be better designed, the observed magnitude of differences between scenarios suggests460

that it would be very difficult for land use allocation schemes to overcome the large climate461

signal. This result is in contrast to the commonly held belief that land use change will remain462

the dominate driver of bird diversity dynamics (Jetz et al. 2007) or biodiversity dynamics in463

general (Periera et al. 2010) over the coming century. While this land use may remain the464

dominant driver at global scales, our work suggests that this may not be the case in many465

areas where land use and biodiversity dynamics are not mediated by large scale deforestation466

and conversion of natural systems to production systems.467

Omitting large parts of a species range when modeling its distribution can overestimate468

the risk of local decline or extinction, as it does not consider all possible environmental469

conditions where a species can survive. Current developments of SDM for animals try to470

disentangle the effects of various environmental variables on population dynamic parameters,471

e.g., climatic impacts on survival, reproductive success and dispersal. Developing such472

models will provide more efficient inferences for policy decision, by better targeting potential473

expected improvements. A few studies already tried to consider realistic dispersal scenarios474

for birds predicted to shift their range polewards, but accounting for dispersal did not change475

the estimates of impact predictions at a national scale (Jiguet et al., 2013). As regards476

biodiversity metrics, the use of geometric mean of current abundances (e.g., taxonomic477

diversity) is not totally satisfying. The current biodiversity crisis could impact the future478
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potential of evolutionary processes, so that the impacts of global change on phylogenetic479

diversity should be estimated. Similarly, as long as ecosystem processes are those important480

for the resilience of the global biological diversity, future investigations should concern the481

potential impacts of global change on functional diversity. Species interactions are shaping482

community dynamics and functions, and integrating the architecture of mutualistic or trophic483

networks will necessarily improve predictions (Thébault and Fontaine, 2010).484

4.2 Econometric models485

Our empirical model of LUC provides a means to examine the effects of returns from land486

and economic-based policies (i.e., acreage payments) on land use decisions. We show that487

changing the returns from land is sufficient to induce significant variations in terms of LUC,488

relative to the scenario with extrapolated trends. Through their influence on capitalized489

values into land returns, climate variables are also proved to be strong determinants of490

LUC. With our regionalized projections, the net effect of climate change is to increase urban,491

annual and perennial crop acreages, at the expense of pastures and forests. These results492

are shared by many projections about LUC but the fine resolution of the initial data and the493

extrapolation by the modelisation of landowners’ choices allow us to obtain a particularly494

high spatial resolution.495

Although our LUC model provided promising results, it could be enhanced in several496

ways. An area for future research is the development of data and methods that could help to497

estimate more precise econometric models of LUC. One possible improvement of our model is498

to take explicitly into account spatial autocorrelation of the outcome variables, the residuals499

or both. The challenge, then, is for land use modeling to take into account time and space500

within a unified framework. In this perspective, the methods developed by Sidharthan and501

Bhat (2012) seem to be promising and are a good alternative to a Bayesian framework or502

an estimation by simulation methods which are quite intensive in terms of computation.503
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Concerning the Ricardian models, there is legitimate concern that extrapolation too far into504

the future may exceed the valid range of use of econometrics. It is especially striking when505

applied to novel climates that do not occur in the data used to estimate the model. However,506

alternatives such as process-based modeling approaches often suffer from a lack of data to507

properly constrain parameterization and may suffer from overtuning, so choosing between508

modeling approaches is not clear-cut. These issues are very similar to those that arise when509

comparing empirical and process-based SDM, for which model selection is difficult to make510

based on objective criteria (Cheaib et al., 2012). A recent multi-study analysis of climate511

change impacts on African agriculture indicates econometric approaches give results that512

are coherent with statistical and processes-based approaches over the time frame examined513

in our analysis (Müller et al., 2011).514

4.3 Climate scenario515

For this analysis, we have used a single climate projection and, therefore, there is a sub-516

stantially broader range of projected climate changes than we have explored. This means517

that there is also substantially higher uncertainty in projections of bird population change518

and LUC than presented here. As noted in the introduction, climate projections from the519

present to mid-century differ more between climate models than between emissions scenar-520

ios, especially in the IPCC AR4 SRES-based climate model ensemble (Knutti and Sedláček,521

2012). The most recent IPCC AR5 RCP-based climate model ensemble projections give even522

broader ranges of warming and precipitation than the AR4 projections, but the multi-model523

ensemble averages are very similar to AR4 projections at both global and French scales524

(Knutti and Sedláček, 2012; Diffenbaugh and Giorgi, 2012). Large uncertainty, especially525

concerning future precipitation regimes must be kept in mind, since modeled populations526

and distributions of birds and LUC appear to depend on temperature and precipitation (see527

Table SM1 and SM2 of SM). The climate projections that we have used are, however, close to528
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the mean of the AR4 and AR5 multi-model climate projection ensembles over the period that529

we have studied.530

It has been shown that climate impacts are highly dependant on the spatial scale of531

climate projections, especially in mountainous areas (Franklin et al., 2013). Thus, given532

the importance of altitudinal related climate variation in determining both bird and LUC533

responses to climate change, regionalized climate is an essential component of analyses of534

interactions between climate, LUC and policy in this type of study. The statistical climate535

downscaling method used in this study provides a much finer spatial scale for time series536

climate data (ca. 8 km) than global scale (0.5° = ca. 110 km latitude for high resolution537

data sets) or many regional scale projections (ca. 20 km, Mitchell and Jones, 2005). The538

downscaled climate is also much better tested against French climate data (Boé et al., 2009)539

than frequently used downscaling methods based on the WorldClim dataset (e.g., Franklin540

et al., 2013).541

4.4 Conservation policy542

Our results suggest that projections of future species distributions, and also management543

options and conservation assessments, cannot be based on the assumption of a uniform544

response to climate change across a species range or at range edges only. This illustrates545

a challenge for the conservation policy that has to reflect this heterogeneity of bird and546

LUC responses. Incorporating the uncertainty that comes from the data and the models is547

another policy challenge that will complicate conservation schemes and highlights the need548

for conservation schemes that leave substantial flexibility for corrections over time. However,549

the conservation policy has to be simple in order to be understandable for landowners and to550

avoid prohibitive implementation and monitoring costs. The economic incentives proposed551

in this paper are in line with these objectives. Here, we limit the conservation policy of a552

fixed-amount payment for pasture at the national scale. We have also tested another amounts553
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of payments for pasture (100 euro/ha and 300 euro/ha) without observing any change in the554

relative spatial distribution of effects. The national acreages of pasture are growing with the555

amounts of payment but the relative shares at different scales stay constants. Determining556

the optimal level of payments for pasture is outside the scope of this paper.557

In contrast to the incentive-based, national policy studied here, at least two main al-558

ternative conservation policies could be implemented at low cost. The first possibility is to559

keep the economic logic of conservation payments but apply varying payments to landowners560

based on the location of their parcels or the presence of vulnerable species (current or future).561

The second possibility is the well-used command-and-control approach that implies external,562

regularly and not generally compensated constrains on LUC. Both would require more eco-563

nomics and ecological information than the conservation policy implemented here, reinforcing564

the interest of prospective tools like the models that we develop here. In particular because565

climate-induced LUC could have positive effects on biodiversity locally, they have to be566

anticipated by conservation policies so that they do not target areas that are not vulnerable.567

In the same vein, spatially targeted conservation policies need to take into account the shift568

in species distributions as a result of climate change, to not target areas that would not be569

viable.570

4.5 Conclusion571

We have compared 5 different integrated scenarios from now to the next 4 decades, using572

IPCC climate, economic and conservation projections. The explicit structure of our bio-573

economic model allows to study the climate-induced LUC resulting from the economic returns574

of land and a conservation policy consisting of annual payments to promote permanent575

pastures. Three main questions have been addressed:576

(i) What are the probable effects of climate on common bird abundances?577
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(ii) Does climate-induced LUC mitigate or amplify the effects of climate?578

(iii) What are the effects of payments in order to have more eco-friendly LUC?579

For (i), we found a negative national effect of climate change on bird abundances at580

2053. This effect is strong relative to the effect of projected LUC. Locally, it causes a greater581

elevation shift than northern shift in the distribution of birds. For (ii), we found that climate-582

induced LUC amplify the negative direct effect of climate on birds. This is not the case583

everywhere, with some, particularly southern, locations that could benefit from such LUC.584

The answer to question (iii) is more complex, because we found that a conservation policy585

based on relatively high payments to promote pastures can not counteract the globally586

negative effect of climate on certain locations and certain species. We do not find any587

significant correlation between the growth of bird abundances with and without conservation,588

both at the spatial and the species scales. We interpret that as the positive effects of589

incentive-based conservation do not match particularly the vulnerable locations and species.590
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